Tetrahedron Letters No. 52, pp 5361 - 5364, 1972. Pergamon Press. Printed in Great Britain.

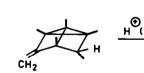
DOUBLE BOND VS. CYCLOPROPANE RING REACTIVITY. IN 1,2,4,5,6-PENTAMETHYL-3-METHYLENETRICYCLO 2.2.0.02,6 HEXANE TOWARDS DIFFERENT ACIDS

H. Hogeveen and P.W. Kwant

Department of Organic Chemistry, The University, Zernikelaan, Groningen, The Netherlands.

(Received in UK 8 November 1972; accepted for publication 30 November 1972)

Usually HCl attacks a molecule at the same site as stronger acids. It was reported recently that (1), containing a double bond and a cyclopropane ring, was attacked at the cyclopropane ring by HC1/CH_C1_, but superacids as FHS0_-S0_C1F, FHS0_-SbF_-S0_F2 and HF-BF3 did not give the product expected upon attack on the cyclopropane ring. Perhaps protonation of the double bond occurred as the first step under the latter conditions.


1,2,4,5,6-Pentamethyl-3-methylenetricyclo[2.2.0.0^{2,6}]hexane ($\underline{2}$)² is reported here to give reaction at the double bond with HFSO, and at the cyclopropane ring with HCl/CH₂Cl₂.

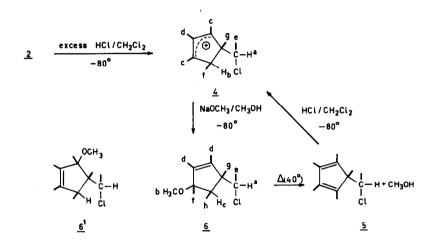
When compound 2 was dissolved in HFSO₃ at -80° (0.5 mole/1), the NMR spectrum of the solution showed only the peaks of the ions <u>Ja</u> and <u>Jb</u> in a ratio of 3:1.³ This result can readily be explained by a protonation of the double bond, as usual at the least substituted carbon atom.



1

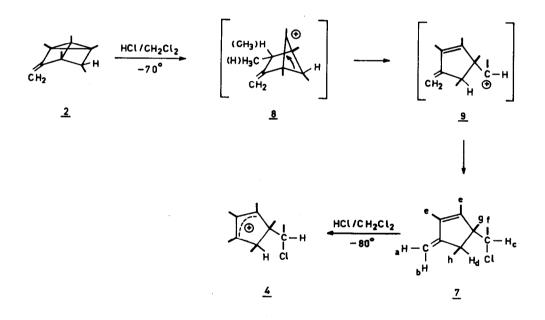
2

H (HFSO3)

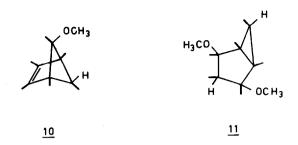


3 a

3ь


5361

When compound $\underline{2}$ was dissolved (0.5 mole/1) in a mixture of CH_2Cl_2 and liquid HCl (2:3 v/v) at -80°, the NMR spectrum of the yellow liquid at -80° was identical to the NMR spectrum of $\underline{5}^4$ under the same conditions. This spectrum was ascribed to the cyclopentenyl-cation $\underline{4}$, showing peaks at $\delta = 4.52$ (quartet, J = 7 cps., 1H, a), 3.52 (multiplet, 1H, b), 3.00 (multiplet, 2CH₂, c), 2.27 (multiplet, 1CH₂, d), 1.77 (doublet, J = 7 cps., 1CH₃, e), 1.53 (doublet, J = 7 cps., 1CH₃, f)⁵, 1.38 (singlet, 1CH₃, g). This structure was confirmed by quenching a solution of $\underline{4}$ in excess of sodium methoxide/methanol at -80°, which after evaporating of the solvent, gave compound $\underline{6}$ as a crude product (80% yield, determined by NMR). Assignment of structure $\underline{6}$ is based on the following data: molecular weight: 230 (determined mass spectrometrically) and NMR spectrum (CCl₄): peaks at $\delta = 4.05$ (quartet, J = 7 cps., 1H, \underline{a}^6), 3.01 (singlet, 1CH₃, b), 2.12 (quartet, J = 7 cps., 1H, c⁶), 1.59 (two overlapping singlets, 2CH₃, d), 1.44 (doublet, J = 7 cps., 1CH₃, e⁶), 1.21 (singlet, 1CH₃, f), 1.01 (singlet, 1CH₃, g), 0.96 (doublet, J = 7 cps., 1CH₃, h⁶). The observation that the product decomposed into $\underline{5}$ and methanol upon standing at 40° for several hours indicates that $\underline{6}$ is the correct structure rather than $\underline{6}^1$.



When a solution of $\underline{2}$ (0.5 mole/1) in CH_2Cl_2 was treated at -70° with <u>ca</u>. 0.7 eq. of dry HCl gas, compound $\underline{7}$ was formed with the following NMR spectrum $\delta = 4.77$ (multiplet, 1H, a), 4.67 (multiplet, 1H, b), 4.29 (quartet, J = 7 cps., 1H, c), 2.77 (multiplet, 1H, d), 1.72 (two broad overlapping singlets, 2CH₃, e), 1.54 (doublet, J = 7 cps., 1CH₃, f), 1.06 (singlet, 1CH₃, g), 1.02 (doublet, J = 7 cps., 1CH₃, h). Upon heating to 40° $\underline{7}$ isomerized quantitatively to $\underline{5}$. Addition of excess of liquid HCl to a solution of $\underline{7}$ in methylene chloride at -80° resulted in the formation of <u>4</u>. Pouring a solution of <u>7</u> in methylene chloride of -70° into a mixture of sodium methoxide and methanol of -70° did not give rise to ether formation, in accordance with the assigned structure.⁷

From these experiments the conclusion can be drawn that HCl in methylene chloride attacks $\underline{2}$ at the cyclopropane ring at temperatures of -70° to -80° . This attack opens the ring presumably in such a manner that intermediate $\underline{8}$ is formed; this rearranges to $\underline{2}$ by a β fission and $\underline{2}$ subsequently reacts with Cl⁻ ion providing $\underline{7}$. Another molecule of HCl can attack $\underline{7}$ to yield $\underline{4}$. Mechanisms involving initial proton addition at another carbon atom of the cyclopropane ring, would either lead to other products or would involve more steps.

When the reaction of $\underline{2}$ with excess HCl (2 to 100 fold) was carried out at temperatures above -60° followed by quenching with sodium methoxide and methanol at the same temperature, the products were found to be not only 5, 6 and hexamethylbenzene, but also 10 (max. 5%) and 11 (max. 25%). The latter compounds have been obtained before from 3a and 3b⁸, so that it is pussible that at temperatures above -60° HCl attacks the double bond as well as the cyclopropane ring.

The difference between the reaction of HFSO₃ and HCl/CH₂Cl₂ at -80° can be explained by the fact that in the latter case hardly any ions are present.⁹ The attacking reagent is not a solvated proton¹⁰, as in the strong acid (as HFSO₃), but rather a polar H-Cl molecule, which obviously can change the reaction pattern dramatically.

REFERENCES.

- 1. H. Hogeveen, C.F. Roobeek and H.C. Volger, Tetrahedron Letters, 1972, 221.
- 2. H. Hogeveen and P.W. Kwant, accompanying paper.
- 3. H. Hogeveen and H.C. Volger, <u>Rec. Trav. Chim.</u>, <u>88</u>, 353 (1969).
- 4. L.A. Paquette and G.R. Krow, <u>Tetrahedron Letters</u>, <u>1968</u>, 2139.
- 5. The peaks of doublet f show additional structure, due to coupling with CH₃ groups of the ring.
- 6. These assignments were confirmed by double resonance measurements.
- 7. The chloroethyl groups of compounds 5 and 6 are not converted into the corresponding ethers under these conditions either.
- 8. H. Hogeveen and P.W. Kwant, Tetrahedron Letters, 1972, 3197.
- 9. N.G. Dorofeeva and O.K. Kudra, Ukrain. Khim. Zhur. 27, 306 (1961), C.A. 56, 5455 (1962).
- Compare the reactivity of liquid HCl towards a double bond, M.E. Peach and T.C. Waddington, <u>J. Chem. Soc</u>., <u>1962</u>, 600.